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Origin of degree correlations in the Internet and other networks
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It has been argued that the observed anticorrelation between the degrees of adjacent vertices in the network
representation of the Internet has its origin in the restriction that no two vertices have more than one edge
connecting them. Here, we propose a formalism for modeling ensembles of graphs with single edges only and
derive values for the exponents and correlation coefficients characterizing them. Our results confirm that the
conjectured mechanism does indeed give rise to correlations of the kind seen in the Internet, although only a
part of the measured correlation can be accounted for in this way.
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I. INTRODUCTION

The statistical properties of networks have been the to
of considerable attention in the physics literature in rec
years @1–4#. Motivated by the availability of large-scal
structural data for networks including the Internet, the Wo
Wide Web, and social and biological networks of vario
kinds, researchers have created a wide selection of mode
networks and processes taking place on networks. One t
of particular interest at present is the issue of degree co
lations in networks. A network or graph is in general co
posed of some set of nodes or ‘‘vertices’’ joined together
lines or ‘‘edges,’’ and the degree of a vertex is defined to
the number of edges connected to the vertex. It has b
found that for many real-world networks the degrees of
vertices at either end of an edge are not independent, bu
correlated with one another, either positively or negativ
@5–7#. A network in which the degrees of adjacent vertic
are positively correlated is said to show assortative mix
by degree, whereas a network in which they are negativ
correlated is said to show disassortative mixing. A striki
pattern that emerges when networks of different types
compared is that most social networks appear to be ass
tively mixed, whereas most technological and biological n
works appear to be disassortative@7,8#.

Of particular interest to us in this paper is the Internet.
the time of writing, the Internet forms a network of abo
11 000 vertices and 32 000 edges, and, as first pointed ou
Pastor-Satorraset al. @5#, the degrees of adjacent vertice
have significant anticorrelation. This can be demonstrated
calculating the mean degreek̄v

nn of the neighbors of a vertex
v in the network as a function of the degreekv of that vertex.
The resulting function is found to fall off with increasingkv ,
roughly as a power lawkv

2n with exponentn.0.5, so that
the higher the degreekv of one vertex, the lower the mea
degree of its neighbors.

In a recent paper, Maslovet al. @6# have proposed a pos
sible explanation for this result. Rather than supposing
anticorrelation of vertex degrees to be the result of socia
engineering constraints on the construction of data netwo
they suggest a topological explanation. Using compu
1063-651X/2003/68~2!/026112~7!/$20.00 68 0261
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simulations, they show for a network of the size and deg
sequence of the Internet that the requirement that there
most one edge between any pair of vertices induces de
anticorrelations very similar to those observed. And inde
there are no double edges in the Internet, a statistically
likely occurrence were we given complete freedom ab
how vertices are connected.

The physical intuition behind the suggestion of Masl
et al. is that the restriction to single edges causes high-deg
vertices to have fewer connections between them than
would if edges were assigned purely at random, and he
there must be more connections between high-degree/
degree vertex pairs instead. A similar mechanism could b
work in other types of networks as well, such as direc
networks. The World Wide Web and foodwebs are two e
amples of directed networks that appear to be disassorta
and usually have no double edges@23#.

In this paper we study the mechanism proposed
Maslov et al. analytically, and demonstrate that it does i
deed produce disassortative mixing by degree of precis
the type observed by Pastor-Satorraset al. @5#. The particular
model chosen by Maslovet al. to test their idea turns out to
be difficult to treat analytically. They studied the ensemble
all graphs with a particular degree sequence and at most
edge between any vertex pair, in which each allowed gr
appears with equal probability. Calculating correlations
this ensemble requires us to enumerate binary matrices
given row and column sums. No closed-form solution f
such an enumeration is known at present, despite decad
study by mathematicians@9,10#. In this paper, therefore, we
take a different approach, borrowing a trick from statistic
mechanics. We study an expanded ‘‘grand canonical’’
semble of graphs in which the number of edges is allowed
vary under the action of a chemical potential. As netwo
size becomes large, the number of edges becomes narr
peaked and the predictions of the model become simila
those of the model of Maslovet al., while the calculations
are far easier.~A grand canonical ensemble of graphs h
also been studied recently by Dorogovtsevet al. @11#, al-
though using a different formalism and to a different pu
pose.!

For networks with power-law degree distributions, w
©2003 The American Physical Society12-1
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will show that indeedk̄v
nn falls off as a power ofkv and

derive the value of the exponentn. We also calculate the
value of the degree correlation coefficient for adjacent ve
ces, which measures the amount of disassortative mixin
the network. We show that the mechanism of Maslovet al.
can account for some, but not all, of the disassortativity s
in the Internet, suggesting that there are also other me
nisms contributing to the observed degree correlations.

II. DEFINITIONS

The classic model in the study of graphs with arbitra
degree sequences is the so-called configuration model@9,12–
16#, in which one specifies the degreekv of each vertexv
51, . . . ,n in a network, which also fixes the total number
edges to bem5 1

2 (vkv . Subject to the given degree s
quence, the vertices are randomly wired to one another.
combinatorics of this model are however awkward and
Chung and Lu@17# recently proposed an alternative mod
that is in many ways more convenient.~Models similar to
that of Chung and Lu have also been introduced indep
dently by a number of other authors@11,18,19#.! As we will
show, by making use of an extension of their model we c
make tractable the problem of counting graphs with sin
edges only. The model of Chung and Lu deals with un
rected networks, and we consider that case first. A fa
straightforward generalization to directed networks will
dealt with briefly.

A. The network model of Chung and Lu

In the model of Chung and Lu@17# one specifies thede-

sireddegreesk̃v of verticesv and then places edges betwe
vertex pairs (v,w) with probability

f vw5
k̃vk̃w

2m̃
, ~1!

where m̃5 1
2 (vk̃v is the desired number of edges in th

graph. The expected degree of vertexv is then

k̄v5(
w

f vw5
k̃v

2m̃
(
w

k̃w5 k̃v . ~2!

Thus, the expected degree of each vertex is equal to its
sired degree and the expected degree distribution is asy
totically equal to the distribution of the desired degree
quence, although any individual vertex may have a deg
that differs from its desired value.@Throughout this paper
we denote desired values of quantities by a tilde~e.g., k̃),
expected values or ensemble means by a bar~e.g., k̄), and
actual values in a particular graph by undecorated charac
~e.g.,k).#

However, this approach is not entirely satisfactory. F
some degree distributions the probabilityf vw can exceed 1.
Physically, this means that there can be more than one e
between a pair of vertices, precisely the situation that we
want to exclude in our calculations. Chung and Lu circu
02611
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the distribution of desired degrees,k̃v<A2m̃ for all v.
While this condition ensures thatf vw<1, it is strongly vio-
lated by networks, such as the Internet, that have power-
degree distributions.

Here, therefore, we adopt an alternative strategy,
adapt the model of Chung and Lu to incorporate an expl
condition that there is only one edge between every ve
pair. As we will see, this leads to some interesting phys
and, in particular, to an explanation of the origin of disass
tativity.

B. Ensemble of networks with single edges

We consider explicitly an ensemble of networks in whi
there is only a single edge between any pair of vertic
There will be an edge between the pair (v,w) with probabil-
ity f vw or not with probability 12 f vw . Then, the probability
of occurrence of a particular graphG can be written

G~G!5 )
(v,w)

~12 f vw! )
edges

f vw

12 f vw
, ~3!

where the first product is over all unique vertex pairs (v,w)
and the second is over only those pairs between which th
is an edge. For convenience, we will writePvw5 f vw /(1
2 f vw), G05) (v,w)(12 f vw), and definedvw to be 1 if there
is an edge betweenv andw and zero otherwise. Then

G~G!5G0 )
(v,w)

Pvw
dvw . ~4!

To progress, we need to choose a form forPvw or, equiva-
lently, for f vw . We will write

Pvw5P~lv ,lw!, ~5!

where thefugacitylv is a real number assigned to vertexv
that will control the expected degree of that vertex, in
manner similar to the desired degrees in the model of Ch
and Lu @17# or the fitness variables introduced in Refs.@18
220#. For the undirected network, we expect thatPvw
5Pwv , so thatP(lv ,lw)5P(lw ,lv) is symmetric in its
arguments.

We would like all graphs with a given degree sequence
appear in our ensemble with equal probability. This is t
criterion applied by Maslovet al. @6# in their simulations,
and allows us to compare our results with theirs. As we n
show, this condition is sufficient to specify the form o
P(lv ,lw).

Suppose that we have two graphsG1 andG2, whereG2 is
obtained fromG1 by changing the positions of two edges
shown in Fig. 1, all other edges remaining untouched.~Ini-
tially there should be no edges betweenA andC or between
B andD.! Formally, this results in the replacement of a fact
PABPCD in G(G1), Eq. ~4!, by PACPBD to give G(G2).
Since the degree sequence is invariant under this transfo
tion, we must haveG(G1)5G(G2), and hence

P~lA ,lB!P~lC ,lD!5P~lA ,lC!P~lB ,lD!. ~6!
2-2
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Rearranging, we then find that

P~lA ,lB!

P~lA ,lC!
5

P~lD ,lB!

P~lD ,lC!
, ~7!

where we have made use of the symmetry ofP.
Since lA and lD each appear on only one side of th

equation, it follows that both sides must be independen
both these quantities, and hence

P~lA ,lB!

P~lA ,lC!
5

P~lD ,lB!

P~lD ,lC!
5

g~lB!

g~lC!
, ~8!

whereg(l) is some function, as yet unspecified. It then fo
lows thatP(lv ,lw) must be factorizable in the form

P~lv ,lw!5g~lv!g~lw!. ~9!

We can confirm that the probabilityG(G) of a graphG
generated according to such a choice does indeed de
only on the degree sequence by observing that

G~G!5G0)
v

@g~lv!#kv, ~10!

wherekv is the actual degree ofv in the graphG. SinceG0
is a constant for given$lv%, this expression is indeed a func
tion only of the degree sequence$kv%.

We are still free to choose the functiong(l) in any way
we wish, but all nontrivial choices are equivalent, since th
just correspond to different definitions of the fugacityl. It
makes sense to make the simplest possible choice and
choose to writeg(l)5b1/2l, so that

Pvw5blvlw , ~11!

whereb is a free parameter that will, as we will see, cont
the total number of edges in the graph.@Note thatlv here is
not the same ask̃v of Chung and Lu as in Eq.~1!, although in
the ‘‘classical limit’’ of graphs with few double edges it be
comes the same. See below.#

FIG. 1. The edge interchange process employed in the argum
of Sec. II B. This process cannot affect the probabilityG of a graph
since the degree sequence is unchanged.
02611
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III. PREDICTIONS AND RESULTS

We now define a grand partition function

Z5(
G

G~G!5G0 (
$dvw%

)
(v,w)

Pvw
dvw . ~12!

Interchanging the order of sum and product this gives

Z5 )
(v,w)

(
dvw

Pvw
dvw5 )

(v,w)
~11Pvw!5 )

(v,w)
~11blvlw!,

~13!

where we have dropped the factor ofG0. ~As is typically the
case with partition functions, leading factors of this type ca
cel out of all observable quantities in the theory.!

From Eq.~10! we can now see that the expected degreek̄v
of vertexv will be given by

k̄v5
lv

Z

]Z

]lv
52lv

]F

]lv
, ~14!

whereF is the free energy

F52 ln Z52 (
(v,w)

ln~11blvlw!. ~15!

Combining Eqs.~14! and ~15!, we then get

k̄v5(
w

blvlw

11blvlw
. ~16!

The expected number of edgesm̄ is the ensemble mean o
the exponent ofb in the partition function, which is given by

m̄52b
]F

]b
5 (

(v,w)

blvlw

11blvlw
. ~17!

The mean degree of the entire systemz̄ is simply 2m̄/n,
wheren is the total number of vertices.

There are clear parallels between these results and
familiar Fermi ensemble of elementary statistical mechan
The quantityf vw introduced earlier, which we can now writ
in the form

f vw5
blvlw

11blvlw
, ~18!

lies strictly in the range from 0 to 1, and represents the pr
ability that an edge lies between a particular pair of vertic
This is the equivalent of the Fermi function of statistic
mechanics.

The mean sum of the degrees of the neighbors of a ve

v, which we denoteK̄v
nn, is given by

K̄v
nn5(

w
f vwk̄w5(

w

blvlw

11blvlw
k̄w , ~19!

with k̄w given by Eq.~16!, and the mean degree of a neig
bor of v is equal tok̄v

nn5K̄v
nn/ k̄v . We will also want to cal-

nt
2-3
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culate the correlation coefficient of the degree of vertices
either end of an edge@7#, whose value is given by

r 5

(
v

k̄vK̄v
nn2~2m̄!21F(

v
k̄v

2G2

(
v

k̄v
32~2m̄!21F(

v
k̃v

2G2 . ~20!

Although in this paper we are dealing primarily with u
directed networks, generalization of the theory to direc
networks is straightforward. Iff vw denotes the probability o
existence of a directed edge fromv to w andPvw is defined
as before, then the expected out-degree~number of outgoing
edges! of a vertexv will be

k̄v
out5(

w
f vw5(

w

Pvw

11Pvw
, ~21!

the expected in-degree~number of incoming edges! will be

k̄v
in5(

w
f wv5(

w

Pwv

11Pwv
, ~22!

and the obvious generalizations of Eqs.~17! and ~19! apply.

A. Example: Power-law degree distribution

We are here interested in the case of the Internet, wh
like a number of other networks, has a degree distribut
that approximately follows a power law

pk}k2t, ~23!

with t;2.260.3 @21,22#. The long tail of the power law
means that the highest-degree vertex pairs in the netw
would be quite likely to have more than one edge runn
between them if the edges were assigned at random, an
behavior of the network changes substantially when th
multiple edges are disallowed. This is the origin of the
fects observed by Maslovet al. @6# in their simulations.

As we now show, the power-law degree distribution c
be reproduced in our model by choosing the fugacityl also
to have a power-law distribution with the same exponentt,
so that the number of vertices with fugacity betweenl and
l1dl is p(l) dl, where

p~l!5H Cl2t for l>l0

0 for l,l0 .
~24!

The lower cutoff makes the distribution normalizable, andC
is a normalizing constant given by
02611
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l0

`

l2t dl5
l0

2t11

t21
. ~25!

~One should keep in mind thatl is not restricted, as the
degree is, to integer values.!

Let us consider the caset5 5
2 , for which the expressions

for the quantities of interest take particularly simple form
For this choice, the expected degreek̄(l) of a vertex with
fugacity l is

k̄~l!5nE
l0

` bll8

11bll8
p~l8! dl8

53n$bl0l2~bl0l!3/2arctan@~bl0l!21/2#%,

~26!

and the mean degreez̄ of the system is

z̄5
2m̄

n
52E

l0

`

k̄~l! p~l!dl

59nbl0
2F12

1

4
FS 2

1

bl0
2
,2,

1

2D G , ~27!

where F(x,a,b) denotes the analytic continuation of th
Lerch transcendent.

The parameterb is to some extent redundant in the
expressions, since we are free to choosel as we wish, but it
proves convenient nonetheless. If we chooseb5(2m̃)21,
wherem̃ is the desired number of edges as before, then
graphs in which there are few double edges we havef vw

.(lvlw)/(2m̃), giving k̄v5(wf vw.(w(lvlw)/(2m̃)

.lv , so that the fugacity is simply equal to the desir
degree of a vertex, as in the model of Chung and Lu@17#.

The regime in which there are few double edges can
thought of as the classical limit of our Fermi ensemble, a
corresponds to the case where the first terms in Eqs.~26! and
~27! dominate. Asl becomes large, however, encouragi
vertices to have a high degree, we enter the quantum reg
where it becomes harder and harder for vertices to find oth
to connect to. This is reflected in Eq.~26! also. Expanding
the inverse tangent as arctanx5x21

3x
311

5x
52O(x7), we find

that the leading term cancels and

k̄~l!5n2
3n

5bl0l
1nO@~bl0l!22#. ~28!

Thus, asl→` the degree tends ton, as we would expect
since this is the largest degree a vertex can have on a
work with no double edges.

The mean sumK̄nn(l) of the degrees of the neighbors o
a vertex with fugacityl is
2-4
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K̄nn~l!5nE
l0

` bll8

11bll8
k̄~l8! p~l8! dl8

59n2~bl0l!3/2Fl0

l
arctan@~bl0l!21/2#

2
p

4 S l0

l D 3/2

$2 ln@11~l/l0!1/2#2 ln~11bl0l!

1O~l0b1/2!%G , ~29!

and from this we can calculatek̄nn @24#.
These results can be extended to other values oft also,

although the formulas are not as elegant as for the cat
5 5

2 . For example, for generalt.1 the equivalent of Eq.
~26! is

k̄~l!5n2F1S 1,211t;t;2
1

bl0l D , ~30!

where2F1 is a hypergeometric function. This form is used
some of the calculations in the following section.

B. Comparison with the Internet

We now compare our model quantitatively with the Inte
net graph. To do this, it is important that we make the sizn

and the number of edgesm̃ the same as the real Interne
since our predictions, Eqs.~26! and ~29!, are dependent on
these quantities. For the purposes of comparison, we use
data of Chenet al. @22# from 2001 on the structure of th
Internet at the autonomous system level, for whichn

510 697 andm̃531 992, which gives a mean degree ofz̄

52m̃/n55.981. For the choice Eq.~24! of fugacity distri-
bution used here, we can arrange for the network to have
correct mean degree by an appropriate choice of the lo
limit l0 of the distribution, and we do this for three valu
t52.1, 2.3, and 2.5 of the exponent of the power law. W
also perform extensive simulations of the model for the sa
parameter values to confirm our calculations, and anal
and numerical results are shown in Figs. 2–4 and in Tab
As we can see, analytical and numerical predictions ag
closely.

Consider first Fig. 2, which is a plot of the mean degree
a vertex as a function of its fugacity. As the figure shows,
degree is closely linear in the fugacity for smalll and flat-
tens off as degree approachesn, as expected.

The same behavior is evident in Fig. 3 also, which sho
the cumulative distribution function of degrees in simu
tions of the model for power-law distributed fugacity, E
~24!. The distribution of degrees also follows a power law~a
straight line on the logarithmic axes used!, until the degree
approachesn, where the distribution is cut off. This is a
eminently sensible behavior: given the constraint of sin
edges only, presumably the real Internet must deviate f
the power-law behavior for large degree, and our mo
should and does reflect this behavior.
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The fundamental result of this paper is shown in Fig.
where we have plotted the mean degreek̄nn of the neighbors
of a vertex, calculated from Eq.~29!, against the degree o
that vertex. This is the comparison used by Pastor-Sato
et al. @5# to demonstrate degree anticorrelation in the Int
net. As the figure shows, there is a clear decline in the va
of k̄nn as degree increases, just as in the real Internet, c

FIG. 2. The ensemble meank̄ of the degree of a vertex in ou
model as a function of the fugacityl of the vertex. The numerica
results are averaged over 1000 repetitions of the simulation.

dotted line indicates the formk̄5l, which the curve is expected to
approximate for smalll.

FIG. 3. The cumulative distribution function for vertex degr
in simulations of our model. The general form of the distribution
a power law for low degree with a cutoff as degree approaches
system sizen.
2-5
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firming that the single-edge constraint does indeed give
to anticorrelations, as conjectured by Maslovet al. Further-
more, the decline appears to be approximately power-law
form k̄nn; k̄2n, as found by Pastor-Satorraset al. We can
deduce approximate values for the exponentn from our re-
sults. We find fort52.1, n.0.65, fort52.3, n.0.55, and
for t52.5, n.0.42. The slopes are shown as the dotted li
in Fig. ~3!. The values forn are all close to the valuen
.0.5 observed for the real Internet@5#. The power law is
only approximate however—the functional form of Eq.~29!
is not just a simple power law, and we can see from
figure that the slope ofk̄nn is smaller for smallerk̄. The same
behavior is visible in both the real Internet data and the sim
lation results of Maslovet al. @6#.

Finally, in Table I, we show values for the mean degrez̄
and degree correlation coefficientr for our model. As we see
the theoretical calculations and numerical results again a
well. Since the Internet is disassortative, we expect the
gree correlation coefficient to be negative in the real n

FIG. 4. The mean degreek̄nn of the neighbors of a vertex as

function of the degreek̄ of that vertex. The dotted lines show th
asymptotic slopes of the curves.

TABLE I. Mean degree and degree correlation coefficient
the networks generated by our model from both the analytic the
and from computer simulations. The simulation results are avera
over 1000 networks each. Figures in parentheses show statis
errors on the least significant figures.

Mean degreez̄ Degree correlationr

t Theory Simulation Theory Simulation

2.1 5.981 5.982(15) 20.0950 20.0932(17)
2.3 5.981 5.972(9) 20.0541 20.0551(18)
2.5 5.981 5.986(7) 20.0304 20.0321(14)
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work, and its value has been measured to ber 520.189@7#.
In the model we also see negative values ofr, whose mag-
nitude depends quite strongly on the value of the exponent.
A detailed comparison of model and real-world data m
therefore have to wait on more precise measurements o
degree distribution~about which there is at present som
dispute@22#!. However, it is interesting to note that none
the cases in Table I is as strongly anticorrelated as the
Internet. Thus, our calculations appear to indicate that so
of the disassortativity in the Internet can be accounted for
the mechanism proposed by Maslovet al., but probably not
all of it. The remainder of the disassortativity is presumab
due to engineering or social constraints on the structure
the network. One possibility, which has been discussed e
where@6,8#, is that the Internet is divided into connectivit
providers such as phone companies and Internet service
viders, who tend to have high degree, since they have lot
customers, and end users of connectivity, who typically h
a degree of only one or two. Most connections in the n
work run from the providers to the end users and are the
fore from high to low degree, giving a social reason f
disassortativity in addition to the purely topological one co
sidered here.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied analytically ensembles
networks where there is at most one edge between any
of vertices. By making use of an enlarged ensemble in wh
the number of edges is allowed to vary in a manner remin
cent of the Fermi ensemble of traditional statistical mech
ics, we have been able to find closed-form expressions
ensemble averages of a number of quantities of interes
particular, we have confirmed the previous numerical find
@6# that graph ensembles with single edges have nega
correlations between the degrees of adjacent vertices.
has been proposed as a possible explanation for the ant
relation or disassortativity observed in the topology of t
Internet@5#. We find that the restriction to single edges c
account for some but not all of the correlations observed
real Internet data.

The same mechanism could be responsible for disass
tivity in other networks also. Many networks, including cit
tion networks, the World Wide Web, social networks, co
laboration networks, metabolic and genetic regulato
networks, and food webs have, at least in their most comm
representations, only single edges between vertex p
Thus, it is reasonable to suppose that these networks w
be disassortative also, and indeed this appears to be the
for most networks that have been studied@8#. There is one
important exception to this rule however: almost all soc
networks, appear to be significantlyassortativein their mix-
ing patterns. We conjecture, therefore, that disassortativity
degree is the normal state of affairs for a network, as a re
of the mechanisms described in this paper, with social n
works being assortative probably because of additional so
effects that are absent from other network types; for o
reason or another, it appears that gregarious people pref
associate with other gregarious people. Furthermore, w
assessing the level of assortativity in a social network, o
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should take into account the natural tendency for network
be disassortative, since this tendency implies that to rea
level even of neutral assortativity would take a moderat
strong bias in favor of positive degree correlation, and rea
ing a substantially assortative state would take a very str
such bias.

Finally, we point out that the general analytical techniq
employed in this paper, of enlarging an ensemble, of gra
to create a grand canonical ensemble, may have applica
to other problems in the study of networks also. It is w
known among statistical physicists that using such an
v.

nt

rin

om
k

02611
to
a

y
h-
g

e
s

ons
l
n-

semble often makes the analytic treatment of a prob
easier, and the results presented here offer hope that
approach may prove useful in other settings.
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